We develop an algebro-geometric formulation for neural networks in machine learning using the moduli space of framed quiver representations. We find natural Hermitian metrics on the universal bundles over the moduli which are compatible with the GIT quotient construction by the general linear group, and show that their Ricci curvatures give a K\"ahler metric on the moduli. Moreover, we use toric moment maps to construct activation functions, and prove the universal approximation theorem for the multi-variable activation function constructed from the complex projective space.
翻译:我们开发了用于机器学习中神经网络的代数-测地配方。我们使用刻板的松动图示的模量空间来进行机器学习。我们发现,在模模力上的通用捆包上,存在着与一般线性组的GIT商数结构相兼容的自然的赫米蒂测量仪,并显示它们的旋律曲线在模力上提供了K\'ahler测量仪。此外,我们使用刻图来构建激活功能,并证明从复杂的投射空间中构建的多变激活功能的通用近似理论。