We make two theoretical contributions to disentanglement learning by (a) defining precise semantics of disentangled representations, and (b) establishing robust metrics for evaluation. First, we characterize the concept "disentangled representations" used in supervised and unsupervised methods along three dimensions-informativeness, separability and interpretability - which can be expressed and quantified explicitly using information-theoretic constructs. This helps explain the behaviors of several well-known disentanglement learning models. We then propose robust metrics for measuring informativeness, separability and interpretability. Through a comprehensive suite of experiments, we show that our metrics correctly characterize the representations learned by different methods and are consistent with qualitative (visual) results. Thus, the metrics allow disentanglement learning methods to be compared on a fair ground. We also empirically uncovered new interesting properties of VAE-based methods and interpreted them with our formulation. These findings are promising and hopefully will encourage the design of more theoretically driven models for learning disentangled representations.
翻译:我们通过下列方法为解析学习做出两个理论贡献:(a) 界定分解表征的确切语义,和(b) 建立强有力的评价衡量标准。首先,我们用三个维度来描述在监督和不受监督的方法中使用的“分解表征”概念,这三个维度包括信息规范、可分离性和可解释性——可以用信息理论结构来明确表达和量化。这有助于解释几个众所周知的分解学习模式的行为。然后我们提出衡量信息、可分离性和可解释性的强有力衡量标准。通过一套综合的实验,我们表明我们的衡量标准正确地描述通过不同方法所学到的表征,并符合定性(视觉)结果。因此,这些衡量标准允许在公平的基础上比较分解学习方法。我们还从经验中发现了基于 VAE 方法的新的有趣特性,并用我们的写法来解释这些特性。这些发现很有希望和希望将鼓励设计更加理论驱动的模式,以学习分解的表征。