We present our winning solution to the SIIM-ISIC Melanoma Classification Challenge. It is an ensemble of convolutions neural network (CNN) models with different backbones and input sizes, most of which are image-only models while a few of them used image-level and patient-level metadata. The keys to our winning are: (1) stable validation scheme (2) good choice of model target (3) carefully tuned pipeline and (4) ensembling with very diverse models. The winning submission scored 0.9600 AUC on cross validation and 0.9490 AUC on private leaderboard.


翻译:我们为SIIM-ISIC的梅兰诺马分类挑战展示了我们的胜利解决方案,这是一系列具有不同骨干和投入大小的神经网络(CNN)演变模型,其中多数是仅图象模型,少数使用图像水平和病人水平元数据,我们获胜的关键是:(1) 稳定的验证计划(2) 模型目标的妥善选择(3) 仔细调整管道和(4) 与非常多样化模型结合。获胜的提交书获得0.9600 ACU的交叉验证和0.9490 ACU的私人首板。

0
下载
关闭预览

相关内容

【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
31+阅读 · 2020年3月30日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
已删除
将门创投
12+阅读 · 2019年7月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Deep Co-Training for Semi-Supervised Image Segmentation
VIP会员
相关资讯
已删除
将门创投
12+阅读 · 2019年7月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Top
微信扫码咨询专知VIP会员