An infinite sequence of sets $\left\{B_{n}\right\}_{n\in\mathbb{N}}$ is said to be a heterochromatic sequence from an infinite sequence of families $\left\{ \mathcal{F}_{n} \right\}_{n \in \mathbb{N}}$, if there exists a strictly increasing sequence of natural numbers $\left\{ i_{n}\right\}_{n \in \mathbb{N}}$ such that for all $n \in \mathbb{N}$ we have $B_{n} \in \mathcal{F}_{i_{n}}$. In this paper, we have proved that if for each $n\in\mathbb{N}$, $\mathcal{F}_n$ is a family of {\em nicely shaped} convex sets in $\mathbb{R}^d$ such that each heterochromatic sequence $\left\{B_{n}\right\}_{n\in\mathbb{N}}$ from $\left\{ \mathcal{F}_{n} \right\}_{n \in \mathbb{N}}$ contains at least $k+2$ sets that can be pierced by a single $k$-flat ($k$-dimensional affine space) then all but finitely many families in $\left\{\mathcal{F}_{n}\right\}_{n\in \mathbb{N}}$ can be pierced by finitely many $k$-flats. This result can be considered as a {\em countably colorful} generalization of the $(\aleph_0, k+2)$-theorem proved by Keller and Perles (Symposium on Computational Geometry 2022). We have also established the tightness of our result by proving a number of no-go theorems.
翻译:暂无翻译