Feedforward neural network (FFN) and two specific types of recurrent neural network, long short-term memory (LSTM) and gated recurrent unit (GRU), are used for modeling US recessions in the period from 1967 to 2021. The estimated models are then employed to conduct real-time predictions of the Great Recession and the Covid-19 recession in US. Their predictive performances are compared to those of the traditional linear models, the logistic regression model both with and without the ridge penalty. The out-of-sample performance suggests the application of LSTM and GRU in the area of recession forecasting, especially for the long-term forecasting tasks. They outperform other types of models across 5 forecasting horizons with respect to different types of statistical performance metrics. Shapley additive explanations (SHAP) method is applied to the fitted GRUs across different forecasting horizons to gain insight into the feature importance. The evaluation of predictor importance differs between the GRU and ridge logistic regression models, as reflected in the variable order determined by SHAP values. When considering the top 5 predictors, key indicators such as the S\&P 500 index, real GDP, and private residential fixed investment consistently appear for short-term forecasts (up to 3 months). In contrast, for longer-term predictions (6 months or more), the term spread and producer price index become more prominent. These findings are supported by both local interpretable model-agnostic explanations (LIME) and marginal effects.
翻译:暂无翻译