Huge amounts of digital page images of important manuscripts are preserved in archives worldwide. The amounts are so large that it is generally unfeasible for archivists to adequately tag most of the documents with the required metadata so as to low proper organization of the archives and effective exploration by scholars and the general public. The class or ``typology'' of a document is perhaps the most important tag to be included in the metadata. The technical problem is one of automatic classification of documents, each consisting of a set of untranscribed handwritten text images, by the textual contents of the images. The approach considered is based on ``probabilistic indexing'', a relatively novel technology which allows to effectively represent the intrinsic word-level uncertainty exhibited by handwritten text images. We assess the performance of this approach on a large collection of complex notarial manuscripts from the Spanish Archivo Host\'orico Provincial de C\'adiz, with promising results.
翻译:世界各地档案馆保存了大量重要手稿的数字页面图像。 数量很大, 档案管理员一般无法用所需的元数据充分标记大多数文件, 从而降低档案的适当组织和学者及公众的有效探索。 文件的等级或“ 类型” 可能是元数据中最重要的标记。 技术问题在于文件的自动分类, 每个文件都由一组未注明的手写文本图像组成, 由图像的文字内容组成。 所考虑的方法基于“ 概率索引”, 这是一种比较新颖的技术, 能够有效地代表手写文本图像所显示的文字层面内在不确定性。 我们评估了从西班牙Archivo Host\'orico Prial de C\'adiz收集的大量复杂的公证手稿的性能, 并取得了有希望的结果 。