Deep neural networks (DNNs) have greatly impacted numerous fields over the past decade. Yet despite exhibiting superb performance over many problems, their black-box nature still poses a significant challenge with respect to explainability. Indeed, explainable artificial intelligence (XAI) is crucial in several fields, wherein the answer alone -- sans a reasoning of how said answer was derived -- is of little value. This paper uncovers a troubling property of explanation methods for image-based DNNs: by making small visual changes to the input image -- hardly influencing the network's output -- we demonstrate how explanations may be arbitrarily manipulated through the use of evolution strategies. Our novel algorithm, AttaXAI, a model-agnostic, adversarial attack on XAI algorithms, only requires access to the output logits of a classifier and to the explanation map; these weak assumptions render our approach highly useful where real-world models and data are concerned. We compare our method's performance on two benchmark datasets -- CIFAR100 and ImageNet -- using four different pretrained deep-learning models: VGG16-CIFAR100, VGG16-ImageNet, MobileNet-CIFAR100, and Inception-v3-ImageNet. We find that the XAI methods can be manipulated without the use of gradients or other model internals. Our novel algorithm is successfully able to manipulate an image in a manner imperceptible to the human eye, such that the XAI method outputs a specific explanation map. To our knowledge, this is the first such method in a black-box setting, and we believe it has significant value where explainability is desired, required, or legally mandatory.


翻译:深心神经网络(DNNS)在过去十年中对许多领域产生了极大影响。然而,尽管在很多问题上表现出了超强的性能,它们的黑箱性质在解释性方面仍构成巨大的挑战。事实上,可以解释的人工智能(XAI)在许多领域至关重要,而答案本身就要求使用一个分类器的输出日志和解释图。这些薄弱的假设使我们的方法在现实世界模型和数据方面非常有用。我们用两种基准数据集(CIFAR100和图象网)来比较我们的方法表现。我们首先使用四种预知的深层次学习模型:VGG16-CIFAR100,VGIXAIAI,一个对 XAAI算法的模型和对抗性攻击,一个模型的模型和模型解释性能解释性能的模型,一个不使用OVG16-CIFAR100,一个硬性能的模型,一个不使用OVIFFINet-IAILAIL 的模型,另一个方法就是“ULOIAIAIA” 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月27日
Arxiv
0+阅读 · 2023年1月26日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
22+阅读 · 2021年12月2日
Arxiv
30+阅读 · 2021年7月7日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员