Depth estimation from monocular images is an important task in localization and 3D reconstruction pipelines for bronchoscopic navigation. Various supervised and self-supervised deep learning-based approaches have proven themselves on this task for natural images. However, the lack of labeled data and the bronchial tissue's feature-scarce texture make the utilization of these methods ineffective on bronchoscopic scenes. In this work, we propose an alternative domain-adaptive approach. Our novel two-step structure first trains a depth estimation network with labeled synthetic images in a supervised manner; then adopts an unsupervised adversarial domain feature adaptation scheme to improve the performance on real images. The results of our experiments show that the proposed method improves the network's performance on real images by a considerable margin and can be employed in 3D reconstruction pipelines.
翻译:单眼图像的深度估计是支气管导航本地化和三维重建管道的重要任务。各种受监督和自我监督的深层次学习方法证明了自己在自然图像的任务上的作用。然而,由于缺乏贴有标签的数据和支气管组织特质腐蚀质素,这些方法在支气管图象上无法有效使用。在这项工作中,我们建议了一种替代的域适应方法。我们的新颖的两步结构首先用有标签的合成图象在监督下训练一个深度估计网络;然后采用一种不受监督的对抗性域特征适应计划来改善真实图像的性能。我们的实验结果表明,拟议的方法可以大大改善网络在实际图像上的性能,并可用于3D重建管道。