We discuss pattern languages for closed pattern mining and learning of interval data and distributional data. We first introduce pattern languages relying on pairs of intersection-based constraints or pairs of inclusion based constraints, or both, applied to intervals. We discuss the encoding of such interval patterns as itemsets thus allowing to use closed itemsets mining and formal concept analysis programs. We experiment these languages on clustering and supervised learning tasks. Then we show how to extend the approach to address distributional data.
翻译:我们讨论封闭式采掘模式的模式语言,学习间隔数据和分配数据。我们首先采用模式语言,首先依靠基于交叉的制约或基于包容的制约,或者同时采用间隔。我们讨论诸如项目项等间隔模式的编码,从而允许使用封闭式采掘项目和正式的概念分析程序。我们将这些语言试验在集群和监管的学习任务上。然后我们展示如何扩大处理分布式数据的方法。