We revisit the basic problem of quantum state certification: given copies of unknown mixed state $\rho\in\mathbb{C}^{d\times d}$ and the description of a mixed state $\sigma$, decide whether $\sigma = \rho$ or $\|\sigma - \rho\|_{\mathsf{tr}} \ge \epsilon$. When $\sigma$ is maximally mixed, this is mixedness testing, and it is known that $\Omega(d^{\Theta(1)}/\epsilon^2)$ copies are necessary, where the exact exponent depends on the type of measurements the learner can make [OW15, BCL20], and in many of these settings there is a matching upper bound [OW15, BOW19, BCL20]. Can one avoid this $d^{\Theta(1)}$ dependence for certain kinds of mixed states $\sigma$, e.g. ones which are approximately low rank? More ambitiously, does there exist a simple functional $f:\mathbb{C}^{d\times d}\to\mathbb{R}_{\ge 0}$ for which one can show that $\Theta(f(\sigma)/\epsilon^2)$ copies are necessary and sufficient for state certification with respect to any $\sigma$? Such instance-optimal bounds are known in the context of classical distribution testing, e.g. [VV17]. Here we give the first bounds of this nature for the quantum setting, showing (up to log factors) that the copy complexity for state certification using nonadaptive incoherent measurements is essentially given by the copy complexity for mixedness testing times the fidelity between $\sigma$ and the maximally mixed state. Surprisingly, our bound differs substantially from instance optimal bounds for the classical problem, demonstrating a qualitative difference between the two settings.


翻译:我们重新审视量子状态认证的基本问题 : 当 $\\ grama\ in\ mathbb{C\\\ d\ f time d} 提供未知混合状态 $\ rho\ prho\ $\ rgma} 或 $\ rho$\ gramafsf\ tr\\\ ge\ \ eepsilon$ 最大混合时, 这是混合度测试, 并且已知 $( d\\\ theta(1)} 位数差异测试 ) 需要 $( lapha) 和 $\\\ c\\\\\ time d} 混合度的描述类型类型, 在两个混合状态中可以避免这种 $( lagreg$), 例如, 更雄心的是, 存在一个简单的功能 $\\\\\\\\\\\\\ lideal deal decregial\ drass report 。

0
下载
关闭预览

相关内容

【经典书】Linux UNIX系统编程手册,1554页pdf
专知会员服务
45+阅读 · 2021年2月20日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
77+阅读 · 2021年1月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月14日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
0+阅读 · 2022年1月12日
Arxiv
6+阅读 · 2021年6月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员