Generative Adversarial Networks (GANs) are powerful generative models that achieved strong results, mainly in the image domain. However, the training of GANs is not trivial, presenting some challenges tackled by different strategies. Evolutionary algorithms, such as COEGAN, were recently proposed as a solution to improve the GAN training, overcoming common problems that affect the model, such as vanishing gradient and mode collapse. In this work, we propose an evaluation method based on t-distributed Stochastic Neighbour Embedding (t-SNE) to assess the progress of GANs and visualize the distribution learned by generators in training. We propose the use of the feature space extracted from trained discriminators to evaluate samples produced by generators and from the input dataset. A metric based on the resulting t-SNE maps and the Jaccard index is proposed to represent the model quality. Experiments were conducted to assess the progress of GANs when trained using COEGAN. The results show both by visual inspection and metrics that the Evolutionary Algorithm gradually improves discriminators and generators through generations, avoiding problems such as mode collapse.


翻译:在这项工作中,我们提议了一种基于分散式存储式邻居嵌入式(t-SNE)的评估方法,以评估GANs的进展,并对发电机在培训中学会的分布进行视觉化分析。我们提议利用从经过训练的制导器中提取的地貌空间来评估发电机生产的样品和输入数据集。根据所产生的t-SNE地图和Jacccard指数提出的一个指标来代表模型质量。我们进行了实验,以评估使用COEGAN培训时GANs的进展。通过视觉检查和测量,结果显示,进化Algorithm 逐渐在几代人之间改进了制导器和发电机,避免了模式崩溃等问题。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
生成式对抗网络GAN异常检测
专知会员服务
116+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月24日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
4+阅读 · 2018年3月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员