Mixup-based data augmentation has achieved great success as regularizer for deep neural networks. However, existing mixup methods require explicitly designed mixup policies. In this paper, we present a flexible, general Automatic Mixup (AutoMix) framework which utilizes discriminative features to learn a sample mixing policy adaptively. We regard mixup as a pretext task and split it into two sub-problems: mixed samples generation and mixup classification. To this end, we design a lightweight mix block to generate synthetic samples based on feature maps and mix labels. Since the two sub-problems are in the nature of Expectation-Maximization (EM), we also propose a momentum training pipeline to optimize the mixup process and mixup classification process alternatively in an end-to-end fashion. Extensive experiments on six popular classification benchmarks show that AutoMix consistently outperforms other leading mixup methods and improves generalization abilities to downstream tasks. We hope AutoMix will motivate the community to rethink the role of mixup in representation learning. The code will be released soon.


翻译:以混合为基础的数据增强作为深神经网络的常规化,取得了巨大的成功。然而,现有的混合方法要求明确设计混合政策。在本文件中,我们提出了一个灵活、一般的自动混合(Automix)框架,该框架利用区别性特征来适应性地学习样本混合政策。我们认为混合是一种托辞任务,将其分成两个子问题:混合样本的产生和混合分类。为此,我们设计了一个轻量级混合块,以根据特征地图和混合标签生成合成样本。由于这两个子问题属于期望-最大化(EM)的性质,我们还提议了一个动力培训管道,以优化混合过程和混合分类过程,或者以端到端的方式。关于六种流行分类基准的广泛实验表明,自动混合始终优于其他主要的混合方法,提高下游任务的一般化能力。我们希望,Automix将激励社区重新思考混合在代表性学习中的作用。代码将很快发布。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员