General change detection (GCD) and semantic change detection (SCD) are common methods for identifying changes and distinguishing object categories involved in those changes, respectively. However, the binary changes provided by GCD is often not practical enough, while annotating semantic labels for training SCD models is very expensive. Therefore, there is a novel solution that intuitively dividing changes into three trends (``appear'', ``disappear'' and ``transform'') instead of semantic categories, named it trend change detection (TCD) in this paper. It offers more detailed change information than GCD, while requiring less manual annotation cost than SCD. However, there are limited public data sets with specific trend labels to support TCD application. To address this issue, we propose a softmatch distance which is used to construct a weakly-supervised TCD branch in a simple GCD model, using GCD labels instead of TCD label for training. Furthermore, a strategic approach is presented to successfully explore and extract background information, which is crucial for the weakly-supervised TCD task. The experiment results on four public data sets are highly encouraging, which demonstrates the effectiveness of our proposed model.


翻译:一般变化检测(GCD)和语义变化检测(SCD)是确定变化和区分这些变化所涉及的对象类别的常见方法,但是,GCD提供的二进制变化往往不够实用,而用于培训 SCD 模型的语义标签非常昂贵。因此,有一个新颖的解决办法,即用直觉将变化分为三种趋势(“出现”、“消失”和“变异”),而不是本文中的语义分类,称之为趋势变化检测(TCD),它比GCD提供更详细的变化信息,而要求人工批注的费用比SCD少。然而,只有有限的公共数据集和特定趋势标签支持TCD应用程序。为解决这一问题,我们建议使用软匹配距离,用于在简单的GCD模型中构建一个薄弱监督的TCD分支,而不是用于培训的TCD标签。此外,还提出了一种战略方法,以成功探索和提取背景信息,这对于薄弱的模型监督的TCD任务至关重要。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
26+阅读 · 2020年2月21日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员