We propose a family of estimators based on kernel ridge regression for nonparametric causal functions such as the dose response curve, heterogeneous treatment effect, and incremental response curve. We assume selection on observable covariates. Treatment and covariates may be discrete or continuous and may take values in general spaces. We reduce causal estimation to combinations of kernel ridge regressions, which have closed form solutions and are easily computed by matrix operations, unlike other machine learning paradigms. We prove uniform consistency of the causal function estimators, with finite sample convergence rates that are the sums of minimax optimal rates for kernel ridge regression. In nonlinear simulations with many covariates, we demonstrate state-of-the-art performance despite the relative simplicity of our proposed approach. We estimate the dose response curve, heterogeneous treatment effect, and incremental response curve of the US Jobs Corps training program. As extensions, we generalize our main results to counterfactual distributions and to causal functions identified by Pearl's front and back door criteria.
翻译:我们建议以内核脊回归法为基础,对非参数性因果功能,如剂量反应曲线、不同处理效果和增量反应曲线等进行一系列估算。我们假设在可观察到的共变体上进行选择。治疗和共变可能是离散的或连续的,并可能在一般空间中取值。我们将因果估计减少为内核脊回归法的组合,这些内核脊回归法具有封闭形式的解决办法,并且很容易通过矩阵操作来计算,这与其他机器学习模式不同。我们证明因果函数测量者的一致性,有一定的样本趋同率,这是最小的内核脊回归最佳率的总和。在与许多共变体进行的非线性模拟中,我们展示了尽管我们拟议方法相对简单但最先进的表现。我们估计了美国工作团培训方案的剂量反应曲线、异化处理效果和递增反应曲线。作为扩展,我们将我们的主要结果概括为反事实分布以及珍珠的前门和后门标准所查明的因果函数。