Exhibiting a deep connection between purely geometric problems and real algebra, the complexity class $\exists \mathbb{R}$ plays a crucial role in the study of geometric problems. Sometimes $\exists \mathbb{R}$ is referred to as the 'real analog' of NP. While NP is a class of computational problems that deals with existentially quantified boolean variables, $\exists \mathbb{R}$ deals with existentially quantified real variables. In analogy to $\Pi_2^p$ and $\Sigma_2^p$ in the famous polynomial hierarchy, we study the complexity classes $\forall \exists \mathbb{R}$ and $\exists \forall \mathbb{R}$ with real variables. Our main interest is the area-universality problem, where we are given a plane graph $G$, and ask if for each assignment of areas to the inner faces of $G$, there exists a straight-line drawing of $G$ realizing the assigned areas. We conjecture that area-universality is $\forall \exists \mathbb{R}$-complete and support this conjecture by proving $\exists \mathbb{R}$- and $\forall \exists \mathbb{R}$-completeness of two variants of area-universality. To this end, we introduce tools to prove $\forall \exists \mathbb{R}$-hardness and membership. Finally, we present geometric problems as candidates for $\forall \exists \mathbb{R}$-complete problems. These problems have connections to the concepts of imprecision, robustness, and extendability.


翻译:显示纯几何问题和真实代数之间的深层关联, 复杂等级 $ { 存在 { mathb{R} $ 和 $\ Sigma_ 2p$ 在著名的多式等级中, 在几何问题的研究中发挥着关键作用。 有时, $\ 存在性===RNP的“真实模拟 ” 。 虽然 NP 是一个计算性问题类别, 涉及真实的量化布林变量, $\ 存在性=mathb{R} 美元与真实的变量有关。 在类比 $\ Pi_ 存在性=2美元 和 美元 在著名的多式等级中, 我们研究复杂等级 $\ gmathb{R} $\ 美元=mathbrationality 存在问题 。 我们的直线绘制 美元=rmabr= climational 正在实现指定区域 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
0+阅读 · 2022年1月14日
Geometry of Dependency Equilibria
Arxiv
0+阅读 · 2022年1月14日
Arxiv
0+阅读 · 2022年1月13日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员