Sampling-based algorithms are widely used in robotics because they are very useful in high dimensional spaces. However, the rate of success and quality of the solutions are determined by an adequate selection of their parameters such as the distance between states, the local planner, and the sampling method. For robots with large configuration spaces or dynamic restrictions selecting these parameters is a challenging task. This paper proposes a method for improving the results for a set of the most popular sampling-based algorithms, the Rapidly-exploring Random Trees (RRTs) by adjusting the sampling method. The idea is to replace the sampling function, traditionally a Uniform Probability Density Function (U-PDF) with a custom distribution (C-PDF) learned from previously successful queries of a similar task. With few samples, our method builds the custom distribution allowing a higher success rate and sparser trees in randomly new queries. We test our method in several common tasks of autonomous driving such as parking maneuvers or obstacle clearance and also in complex scenarios outperforming the base original and bias RRT. In addition, the proposed method requires a relative small set of examples, unlike current deep learning techniques that require a vast amount of examples.


翻译:抽样算法在高维空间非常有用,因此在机器人中广泛使用。然而,解决方案的成功率和质量是通过适当选择参数来确定的,例如各州之间的距离、当地规划员和抽样方法。对于拥有大配置空间或动态限制的机器人来说,选择这些参数是一项艰巨的任务。本文建议了一种方法,通过调整取样方法来改进一套最受欢迎的抽样算法的结果,即快速勘探随机树(RRTs),目的是取代取样功能,传统上是统一的概率密度函数(U-PDF),而采用从以前成功查询类似任务中学习的自定义分布法(C-PDF)。用很少的样本,我们的方法建立自定义分布法,允许较高的成功率和在随机新查询中稀树干。我们用一些通用的自动驾驶方法,例如停车操作法或清除障碍,在复杂的假设中,我们用的方法比原始和偏差的RRT高。此外,拟议方法需要一组相对小的例子,而不像目前的深层次学习技术需要大量的例子。

0
下载
关闭预览

相关内容

【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月4日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月4日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员