Deep reinforcement learning algorithms often use two networks for value function optimization: an online network, and a target network that tracks the online network with some delay. Using two separate networks enables the agent to hedge against issues that arise when performing bootstrapping. In this paper we endow two popular deep reinforcement learning algorithms, namely DQN and Rainbow, with updates that incentivize the online network to remain in the proximity of the target network. This improves the robustness of deep reinforcement learning in presence of noisy updates. The resultant agents, called DQN Pro and Rainbow Pro, exhibit significant performance improvements over their original counterparts on the Atari benchmark demonstrating the effectiveness of this simple idea in deep reinforcement learning. The code for our paper is available here: Github.com/amazon-research/fast-rl-with-slow-updates.


翻译:深度增强学习算法通常使用两个网络来进行值函数优化:一个在线网络和一个以一定延迟跟踪在线网络的目标网络。使用两个独立的网络使智能体能够对抗在引导式训练期间出现的问题。在本文中,我们继承了两个广受欢迎的深度增强学习算法——DQN和Rainbow,并通过更新方法奖励在线网络保持在目标网络的附近,从而提高了深度增强学习在存在噪声更新的情况下的健壮性。这种更新方法是围绕一个简单的想法展开的,即使用更慢的更新策略来训练智能体。因此,经过我们的改进,DQN Pro和Rainbow Pro在Atari基准测试中表现出显着的性能提升,证明了这种方法在深度增强学习中的有效性。我们的代码可在GitHub上找到:Github.com/amazon-research/fast-rl-with-slow-updates.

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
手把手教你入门深度强化学习(附链接&代码)
THU数据派
76+阅读 · 2019年7月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
45+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
21+阅读 · 2022年11月8日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
手把手教你入门深度强化学习(附链接&代码)
THU数据派
76+阅读 · 2019年7月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
45+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员