The shuffle product \(u\shuffle v\) of two words \(u\) and \(v\) is the set of all words which can be obtained by interleaving \(u\) and \(v\). Motivated by the paper \emph{The Shuffle Product: New Research Directions} by Restivo (2015) we investigate a special case of the shuffle product. In this work we consider the shuffle of a word with itself called the \emph{self shuffle} or \emph{shuffle square}, showing first that the self shuffle language and the shuffle of the language are in general different sets. We prove that the language of all words arising as a self shuffle of some word is context sensitive but not context free. Furthermore, we show that the self shuffle \(w \shuffle w\) uniquely determines \(w\).
翻译:洗牌产品\( u\ shuffle v\) 两个单词\( u\) 和\( v\) 是所有单词的集合, 可以通过插入\( u\) 和\( v\) 获得。 由纸张 \ emph{ shuffle Product { The shuffle Production: new Restivo( 2015) 所激发的。 我们调查了洗牌产品的一个特例。 在此工作中, 我们把一个单词的打字本身称为 \ emph{ selfshuffle} 或\ emph{ shuffle pla} 本身视为洗牌, 首先显示自我洗牌语言和该语言的打牌一般是不同的。 我们证明, 作为某些单词的自打牌产生的所有单词的语言都是上下文敏感, 但不是上下文。 此外, 我们显示自洗牌( w\) 唯一决定\ (w\) 的 。