In this paper we develop a framework for characterizing causal effects via distributional distances. In particular we define a causal effect in terms of the $L_1$ distance between different counterfactual outcome distributions, rather than the typical mean difference in outcome values. Comparing entire counterfactual outcome distributions can provide more nuanced and valuable measures for exploring causal effects beyond the average treatment effect. First, we propose a novel way to estimate counterfactual outcome densities, which is of independent interest. Then we develop an efficient estimator of our target causal effect. We go on to provide error bounds and asymptotic properties of the proposed estimator, along with bootstrap-based confidence intervals. Finally, we illustrate the methods via simulations and real data.
翻译:在本文中,我们制定了一个通过分布距离确定因果关系的框架。特别是,我们定义了不同反事实结果分布之间1美元距离的因果关系,而不是结果值的典型平均差值。比较整个反事实结果分布可以提供更细微和有价值的措施,探索超出平均治疗效果的因果关系。首先,我们提出了一个新的方法来估计反事实结果密度,这是独立感兴趣的。然后,我们开发了我们目标因果关系的有效估计器。我们接着提供了拟议估算器的误差界限和无干扰特性,以及基于靴带的信任间隔。最后,我们通过模拟和真实数据来说明方法。