Identifying unique characteristics in a network through comparison with another network is an essential network analysis task. For example, with networks of protein interactions obtained from normal and cancer tissues, we can discover unique types of interactions in cancer tissues. This analysis task could be greatly assisted by contrastive learning, which is an emerging analysis approach to discover salient patterns in one dataset relative to another. However, existing contrastive learning methods cannot be directly applied to networks as they are designed only for high-dimensional data analysis. To address this problem, we introduce a new analysis approach called contrastive network representation learning (cNRL). By integrating two machine learning schemes, network representation learning and contrastive learning, cNRL enables embedding of network nodes into a low-dimensional representation that reveals the uniqueness of one network compared to another. Within this approach, we also design a method, named i-cNRL, which offers interpretability in the learned results, allowing for understanding which specific patterns are only found in one network. We demonstrate the effectiveness of i-cNRL for network comparison with multiple network models and real-world datasets. Furthermore, we compare i-cNRL and other potential cNRL algorithm designs through quantitative and qualitative evaluations.
翻译:与另一个网络进行比较,确定网络的独特特征是一项基本的网络分析任务。例如,通过从正常组织和癌症组织获得的蛋白质互动网络,我们可以发现癌症组织中独特的互动类型。这一分析任务可以通过对比性学习得到极大帮助。这是一种新出现的分析方法,可以发现一个数据集中相对另一个数据集的突出模式。然而,现有的对比性学习方法不能直接应用于网络,因为它们只设计用于高维数据分析。为了解决这一问题,我们采用了一种新的分析方法,称为对比性网络代表性学习(cNRL)。通过整合两种机器学习计划,即网络代表性学习和对比性学习,CNRL能够将网络节点嵌入一个低维度的表达方式,显示一个网络相对于另一个网络的独特性。在这种方法中,我们还设计了一种名为i-cNRCL的方法,该方法在所学结果中提供解释性,从而能够了解只有一个网络才发现的具体模式。我们通过定量和现实世界数据集来证明i-cNRL网络与多个网络模型进行比较的有效性。此外,我们通过对i-cNRL和其他潜在的CRL定量和定量设计进行对比。