Word embeddings learn implicit biases from linguistic regularities captured by word co-occurrence statistics. By extending methods that quantify human-like biases in word embeddings, we introduceValNorm, a novel intrinsic evaluation task and method to quantify the valence dimension of affect in human-rated word sets from social psychology. We apply ValNorm on static word embeddings from seven languages (Chinese, English, German, Polish, Portuguese, Spanish, and Turkish) and from historical English text spanning 200 years. ValNorm achieves consistently high accuracy in quantifying the valence of non-discriminatory, non-social group word sets. Specifically, ValNorm achieves a Pearson correlation of r=0.88 for human judgment scores of valence for 399 words collected to establish pleasantness norms in English. In contrast, we measure gender stereotypes using the same set of word embeddings and find that social biases vary across languages. Our results indicate that valence associations of non-discriminatory, non-social group words represent widely-shared associations, in seven languages and over 200 years.
翻译:嵌入的字从用词共生统计得出的语言规律学中学习隐含的偏见。 通过推广用字共生的字共生的人类偏见量化方法,我们引入了ValNorm, 这是一项新颖的内在评价任务和量化社会心理学中人称字组影响的价值层面的方法。 我们用7种语言(中文、英文、德文、波兰文、葡萄牙文、西班牙文和土耳其文)和200年的历史英文文本静态词嵌入了ValNorm。 ValNorm在量化不歧视、非社会群体字组的价值方面实现了一贯高的准确性。 具体地说, ValNorm 实现了399个字组的人类判断值分数的Pearson相关性, r=0.88, 用于在英语中建立愉快的规范。 相比之下,我们用同一套词嵌入的词衡量性别陈规定型观念,发现不同语言的社会偏见。 我们的结果表明,不歧视、非社会群体词汇的价值协会代表着七种语言和200年多年以来的广泛共有的协会。