Autonomous grasping is an important factor for robots physically interacting with the environment and executing versatile tasks. However, a universally applicable, cost-effective, and rapidly deployable autonomous grasping approach is still limited by those target objects with fuzzy-depth information. Examples are transparent, specular, flat, and small objects whose depth is difficult to be accurately sensed. In this work, we present a solution to those fuzzy-depth objects. The framework of our approach includes two major components: one is a soft robotic hand and the other one is a Fuzzy-depth Soft Grasping (FSG) algorithm. The soft hand is replaceable for most existing soft hands/grippers with body compliance. FSG algorithm exploits both RGB and depth images to predict grasps while not trying to reconstruct the whole scene. Two grasping primitives are designed to further increase robustness. The proposed method outperforms reference baselines in unseen fuzzy-depth objects grasping experiments (84% success rate).
翻译:自动掌握是机器人与环境进行物理互动和执行多功能任务的一个重要因素。 但是,普遍适用的、具有成本效益的和可迅速部署的自主掌握方法仍然受到具有模糊深度信息的目标对象的限制。 示例是透明、 显眼、 平坦和细小的物体,其深度难以准确感知。 在这项工作中, 我们为这些模糊深度天体提出了一个解决方案。 我们的方法框架包括两个主要组成部分: 一个是软机器人手,另一个是模糊深度软性软性吸附算法( FSG ) 。 软手可以被大多数现有的软手/ 猛击手替换为身体合规性。 FSG 算法利用 RGB 和深度图像来预测捕捉过程, 但不试图重建整个场景。 两种抓捉原始物体的设计是为了进一步增强坚固性。 拟议的方法比隐蔽深度天体捕捉实验中的参考基线( 84% 成功率) 。