Caching can be leveraged to significantly improve network performance and mitigate congestion. However, characterizing the optimal tradeoff between routing cost and cache deployment cost remains an open problem. In this paper, for a network with arbitrary topology and congestion-dependent nonlinear cost functions, we aim to jointly determine the cache deployment, content placement, and hop-by-hop routing strategies, so that the sum of routing cost and cache deployment cost is minimized. We tackle this NP-hard problem starting with a fixed-routing setting, and then to a general dynamic-routing setting. For the fixed-routing setting, a Gradient-combining Frank-Wolfe algorithm with $(\frac{1}{2},1)$-approximation is presented. For the general dynamic-routing setting, we obtain a set of KKT necessary optimal conditions, and devise a distributed and adaptive online algorithm based on the conditions. We demonstrate via extensive simulation that our algorithms significantly outperform a number of baseline techniques.
翻译:缓存可以用来大大改善网络性能和缓解拥堵。 但是,确定路由成本和缓冲部署成本之间的最佳权衡仍然是一个尚未解决的问题。 本文中, 对于具有任意的地形学和拥堵非线性成本功能的网络, 我们的目标是共同确定缓存部署、 内容放置和跳跃路由战略, 以便最大限度地降低路由成本和缓冲部署成本的总和。 我们从固定路由设置开始, 然后再到一般动态路由设置, 解决这个NP的难题。 对于固定路由设置, 显示一个“ 累进式组合法- 弗兰克- 沃费算法 ”, 其价格为$( frac{1<unk> 2}, 1) 美元 美元, $- 约合 。 对于总的动态路由设置, 我们获得一套必要的 KKT 最佳条件, 并根据条件设计一套分布和适应性在线算法。 我们通过广泛的模拟, 证明我们的算法大大超出一系列基线技术 。</s>