In this paper, we aim at providing an effective Pairwise Learning Neural Link Prediction (PLNLP) framework. The framework treats link prediction as a pairwise learning to rank problem and consists of four main components, i.e., neighborhood encoder, link predictor, negative sampler and objective function. The framework is flexible that any generic graph neural convolution or link prediction specific neural architecture could be employed as neighborhood encoder. For link predictor, we design different scoring functions, which could be selected based on different types of graphs. In negative sampler, we provide several sampling strategies, which are problem specific. As for objective function, we propose to use an effective ranking loss, which approximately maximizes the standard ranking metric AUC. We evaluate the proposed PLNLP framework on 4 link property prediction datasets of Open Graph Benchmark, including ogbl-ddi, ogbl-collab, ogbl-ppa and ogbl-ciation2. PLNLP achieves top 1 performance on ogbl-ddi and ogbl-collab, and top 2 performance on ogbl-ciation2 only with basic neural architecture. The performance demonstrates the effectiveness of PLNLP.


翻译:在本文中,我们的目标是提供一个有效的对称学习神经链接(PLNLP)框架。框架将预测作为一对一的学习,对问题进行排序,由四个主要部分组成,即邻里编码器、链接预测器、负取样器和客观功能。框架具有灵活性,任何通用的图形神经卷变或链接预测特定神经结构都可以用作邻里编码器。对于链接预测器,我们设计不同的评分功能,可以根据不同类型的图表选择。在负抽样器中,我们提供若干具体问题的抽样战略。关于客观功能,我们提议使用有效的排名损失,以尽量扩大标准等级指标AUC。我们评价拟议的PLLP框架,将开放图表基准的4个属性预测数据集(包括ogbl-ddi、ogbbl-collab、ogbl-ppa和ogbl-ciation2.PLLP实现在ogl-di和ogb-colab上最高1级的绩效。我们评价了PLP 2级基本绩效展示。

0
下载
关闭预览

相关内容

网络中的链路预测(Link Prediction)是指如何通过已知的网络节点以及网络结构等信息预测网络中尚未产生连边的两个节点之间产生链接的可能性。这种预测既包含了对未知链接(exist yet unknown links)的预测也包含了对未来链接(future links)的预测。该问题的研究在理论和应用两个方面都具有重要的意义和价值 。
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
VIP会员
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员