Given a composite image, image harmonization aims to adjust the foreground to make it compatible with the background. High-resolution image harmonization is in high demand, but still remains unexplored. Conventional image harmonization methods learn global RGB-to-RGB transformation which could effortlessly scale to high resolution, but ignore diverse local context. Recent deep learning methods learn the dense pixel-to-pixel transformation which could generate harmonious outputs, but are highly constrained in low resolution. In this work, we propose a high-resolution image harmonization network with Collaborative Dual Transformation (CDTNet) to combine pixel-to-pixel transformation and RGB-to-RGB transformation coherently in an end-to-end framework. Our CDTNet consists of a low-resolution generator for pixel-to-pixel transformation, a color mapping module for RGB-to-RGB transformation, and a refinement module to take advantage of both. Extensive experiments on high-resolution image harmonization dataset demonstrate that our CDTNet strikes a good balance between efficiency and effectiveness.
翻译:根据复合图像,图像统一的目的是调整前景,使其与背景相容。高分辨率图像统一需求很大,但仍然未开发。常规图像统一方法学习全球RGB-RGB-RGB-RGB转换,这种转换可以不遗余力地达到高分辨率,但忽视了不同的当地环境。最近深层次的学习方法学会密集的像素到像素转换,这种转换可以产生和谐的结果,但是在低分辨率方面受到高度限制。在这项工作中,我们提议与合作的双向图像变换(CDTNet)建立高分辨率图像协调网络,将像素到像素的转换和RGB-RGB-RGB转换在端端端到端框的框架内连贯地结合起来。我们的CDTNet包括一个低分辨率的像素转换生成器,一个RGB-RGB-RGB变异像素的彩色绘图模块,以及一个利用两者的精细模块。关于高分辨率图像统一数据集的广泛实验表明,我们的CDTNet在效率和效果之间取得了良好的平衡。