Vehicle-to-everything (V2X) communication is a growing area of communication with a variety of use cases. This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks. The aim is to maximize the time average rate per vehicular user (VUE) while ensuring a target minimum rate for all VUEs with low signaling overhead. We first formulate the user (vehicle) association problem as a discrete non-convex optimization problem. Then, by leveraging tools from machine learning, specifically distributed deep reinforcement learning (DDRL) and the asynchronous actor critic algorithm (A3C), we propose a low complexity algorithm that approximates the solution of the proposed optimization problem. The proposed DDRL-based algorithm endows every road side unit (RSU) with a local RL agent that selects a local action based on the observed input state. Actions of different RSUs are forwarded to a central entity, that computes a global reward which is then fed back to RSUs. It is shown that each independently trained RL performs the vehicle-RSU association action with low control overhead and less computational complexity compared to running an online complex algorithm to solve the non-convex optimization problem. Finally, simulation results show that the proposed solution achieves up to 15\% gains in terms of sum rate and 20\% reduction in VUE outages compared to several baseline designs.
翻译:车辆对一切(V2X)通信是一个与各种使用案例沟通的日益增长的领域。本文调查了车辆-细胞协会在毫米波(mmWave)通信网络中的问题。目的是最大限度地提高每个车辆用户(VUE)的平均时间率,同时确保所有信号信号低的VUE(V2X)通信的最小比率。我们首先将用户(V2X)关联问题作为一个离散的非电离子优化问题来表述。然后,通过利用机器学习工具,具体分发深度强化学习(DDRL)和不同步的演员批评算法(A3C),我们提出了一种低复杂性的算法,以接近拟议优化问题的解决方案。拟议的基于DL的算法将每个道路一侧单位(RSU)都设定了最低时间率,而当地RL代理商则根据观察到的输入状态选择当地行动。不同的RSU的行动被转交给一个中央实体,然后将全球奖励反馈给RUSU,然后反馈给RSU(DL),我们提出一个独立训练的RL将车辆-RSU(RSU)连结起来,比较RSU(RSU)的车辆-x)比对拟议的优化问题提出最接近15的低控制率的模型的模型,最后算算算算算出一个不复杂的结果,最后将降低的20的计算。最后算算算取出一个不那么的计算。