We study a high-dimensional regression setting under the assumption of known covariate distribution. We aim at estimating the amount of explained variation in the response by the best linear function of the covariates (the signal level). In our setting, neither sparsity of the coefficient vector, nor normality of the covariates or linearity of the conditional expectation are assumed. We present an unbiased and consistent estimator and then improve it by using a zero-estimator approach, where a zero-estimator is a statistic whose expected value is zero. More generally, we present an algorithm based on the zero estimator approach that in principle can improve any given estimator. We study some asymptotic properties of the proposed estimators and demonstrate their finite sample performance in a simulation study.
翻译:我们根据已知的共变分布假设研究一个高维回归值。 我们的目标是根据共变数的最佳线性功能(信号水平)来估计反应中解释的变异程度。 在我们的设置中,既不假定系数矢量的宽度,也不假定共同变异的正常性或有条件期望的线性。 我们提出一个公正和一致的估测器,然后通过使用零估测器方法来改进它。 在零估量器中,零估量器是一种统计,其预期值为零。 更一般地说,我们提出一种基于零估测器方法的算法,该算法原则上可以改进任何给定的估测器。 我们在模拟研究中研究拟议估测器的一些非均衡性特性,并在模拟研究中展示其有限的样本性能。