Data privacy is an essential issue in publishing data visualizations. However, it is challenging to represent multiple data patterns in privacy-preserving visualizations. The prior approaches target specific chart types or perform an anonymization model uniformly without considering the importance of data patterns in visualizations. In this paper, we propose a visual analytics approach that facilitates data custodians to generate multiple private charts while maintaining user-preferred patterns. To this end, we introduce pattern constraints to model users' preferences over data patterns in the dataset and incorporate them into the proposed Bayesian network-based Differential Privacy (DP) model PriVis. A prototype system, DPVisCreator, is developed to assist data custodians in implementing our approach. The effectiveness of our approach is demonstrated with quantitative evaluation of pattern utility under the different levels of privacy protection, case studies, and semi-structured expert interviews.
翻译:数据隐私是公布数据可视化的基本问题。然而,在保存隐私的可视化中代表多种数据模式具有挑战性。先前的做法针对特定图表类型,或者在不考虑数据模式在可视化中的重要性的情况下统一使用匿名模式。在本文件中,我们建议采用视觉分析方法,便利数据保管人制作多张私人图表,同时保持用户偏好的模式。为此,我们引入模式限制,以模型形式限制用户对数据集中的数据模式的偏好,并将其纳入基于Bayesian网络的PriVis模型。开发了一个原型系统,即DPVisCreator,以协助数据保管人实施我们的方法。我们的方法的有效性体现在对不同层次的隐私保护、案例研究和半结构专家访谈下的模式效用进行定量评价。