We consider a parallel server system with so-called cancel-on-completion redundancy. There are $n$ servers and multiple job classes $j$. An arriving class $j$ job consists of $d_j$ components, placed on a randomly selected subset of servers; the job service is complete as soon as $k_j$ components out of $d_j$ (with $k_j \le d_j$) complete their service, at which point the unfinished service of all remaining $d_j-k_j$ components is canceled. The system is in general non-work-conserving, in the sense that the average amount of new workload added to the system by an arriving class $j$ job is not defined a priori -- it depends on the system state at the time of arrival. This poses the main challenge for the system analysis. For the system with a fixed number of servers $n$ our main results include: the stability properties; the property that the stationary distributions of the relative server workloads remain tight, uniformly in the system load. We also consider the mean-field asymptotic regime when $n\to\infty$ while each job class arrival rate per server remains constant. The main question we address here is: under which conditions the steady-state asymptotic independence (SSAI) of server workloads holds, and in particular when the SSAI for the full range of loads (SSAI-FRL) holds. (Informally, SSAI-FRL means that SSAI holds for any system load less than $1$.) We obtain sufficient conditions for SSAI and SSAI-FRL. In particular, we prove that SSAI-FRL holds in the important special case when job components of each class $j$ are i.i.d. with an increasing-hazard-rate distribution.
翻译:我们认为,这是一个平行的服务器系统,有所谓的取消完成中的冗余。 服务器和多种工作类别都存在美元。 抵达的某类美元工作由随机选择的服务器子集中设置的美元构成; 工作服务一旦完成, K_ j美元部分即为美元( 美元_ j\ le d_ j美元) 美元( 美元+ 美元+ 美元+ j), 其服务将取消所有剩余的 $d_ j- k_ j 元的未完成服务。 系统一般是非工作维护的, 也就是说, 抵达的美元+j 美元的工作增加到系统的平均新工作量数量没有事先定义。 这对系统分析构成主要挑战。 对于拥有固定服务器数的系统来说, 美元+ SSA 的稳定性; 相对服务器工作量的固定分布仍然很紧, 在系统负荷中统一。 我们还认为, 当 美元+ 美元- 美元+ 美元+ 美元递增的系统运行中, 当我们每个正常的SSAI 的SISL 运行期间, 将保持固定的SIS 。