In this work, we study age-optimal scheduling with stability constraints in a multiple access channel with two heterogeneous source nodes transmitting to a common destination. The first node is connected to a power grid and it has randomly arriving data packets. Another energy harvesting (EH) sensor monitors a stochastic process and sends status updates to the destination. We formulate an optimization problem that aims at minimizing the average age of information (AoI) of the EH node subject to the queue stability condition of the grid-connected node. First, we consider a Probabilistic Random Access (PRA) policy where both nodes make independent transmission decisions based on some fixed probability distributions. We show that with this policy, the average AoI is equal to the average peak AoI, if the EH node only sends freshly generated samples. In addition, we derive the optimal solution in closed form, which reveals some interesting properties of the considered system. Furthermore, we consider a Drift-Plus-Penalty (DPP) policy and develop AoI-optimal and peak-AoI-optimal scheduling algorithms using the Lyapunov optimization theory. Simulation results show that the DPP policy outperforms the PRA policy in various scenarios, especially when the destination node has low multi-packet reception capabilities.


翻译:在这项工作中,我们研究一个多存取频道中具有稳定性限制的年龄最佳时间安排,该频道有两个不同的源节点传输到共同目的地。第一个节点连接到一个电网,并随机传送数据包。另一个能源采集传感器监测一个随机检测过程,并向目的地发送状态更新。我们提出了一个优化问题,目的是尽量减少与网联节点的队列稳定性条件相关的EH节点的平均信息年龄(AoI)。首先,我们考虑一种概率随机访问政策,即两个节点根据某种固定概率分布作出独立的传输决定。我们显示,根据这项政策,平均AoI等于平均峰值AoI,条件是EH节只发送新鲜生成的样本。此外,我们以封闭的形式获得最佳解决方案,这显示了所考虑的系统的一些有趣的特性。此外,我们考虑的是Drift-Plus-Penalty(DPPP)政策,并开发AoI-op-Ao-oper政策,该政策根据固定概率分布,我们显示,平均AoI值等于平均为平均AoI值,如果Elsimalimalimalsimaldal 这样的定位模型显示,则特别不进行最低目的的图像。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员