Terahertz communication is one of the most promising wireless communication technologies, due to its capability to provide high bitrates. THz frequencies suffer however from high signal attenuation and signal degradation, which makes the THz channel modeling and estimation fundamentally hard. On the other hand, channel estimation of THz transmission system is critical for THz systems to be practically adopted in wireless communications. We consider the problem of channel modeling with deterministic channel propagation and the related physical characteristics of THz bands, and study the effectiveness of various machine learning algorithms to estimate the channel. We apply different machine learning algorithms for channel estimation, including neural networks (NN), logistic regression (LR), and projected gradient ascent (PGA). Numerical results show that PGA algorithm yields the most promising performance at SNR=0 dB with NMSE of -12.8 dB.
翻译:Terahertz 通信是最有希望的无线通信技术之一,因为它能够提供高位位速率。但THz频率受到高信号衰减和信号降解的影响,这使得THz频道的建模和估计从根本上变得非常困难。另一方面,THz传输系统的频道估计对于无线通信实际采用THz系统至关重要。我们考虑到通过确定性信道传播的频道建模以及THz波段的相关物理特征,并研究各种机器学习算法对频道进行估计的有效性。我们采用了不同的机器学习算法,包括神经网络(NN)、物流回归(LR)和预测梯度(PGA)等。数字结果显示,PGA算法在SNR=0 dB和NMSE的-12.8 dB中产生最有希望的性效果。