6D robotic grasping beyond top-down bin-picking scenarios is a challenging task. Previous solutions based on 6D grasp synthesis with robot motion planning usually operate in an open-loop setting, which are sensitive to grasp synthesis errors. In this work, we propose a new method for learning closed-loop control policies for 6D grasping. Our policy takes a segmented point cloud of an object from an egocentric camera as input, and outputs continuous 6D control actions of the robot gripper for grasping the object. We combine imitation learning and reinforcement learning and introduce a goal-auxiliary actor-critic algorithm for policy learning. We demonstrate that our learned policy can be integrated into a tabletop 6D grasping system and a human-robot handover system to improve the grasping performance of unseen objects. Our videos and code can be found at https://sites.google.com/view/gaddpg .
翻译:6D 机器人捕捉超越自上而下从垃圾中挑选的情景是一项艰巨的任务。 基于 6D 捕捉与机器人运动规划相结合的先前解决方案通常在开放环环境中运作,对捕捉合成错误十分敏感。 在这项工作中,我们提出了一种新的方法,用于学习6D 捕捉的闭环控制政策。我们的政策将一个天体的分割点云从一个以自我为中心的相机作为输入,并输出机器人抓捕器为抓取该天体而持续进行的 6D 控制动作。我们结合了模仿学习和强化学习,并引入了一种用于政策学习的目标辅助性行为者-critic 算法。我们证明,我们所学过的政策可以融入一个6D 桌面捕捉系统和一个人类机器人交接系统,以提高不可见天体的捕捉性能。我们的视频和代码可以在 https://sites.google.com/view/gadpg 上找到。