The ratio of the hazard functions of two populations or two strata of a single population plays an important role in time-to-event analysis. Cox regression is commonly used to estimate the hazard ratio under the assumption that it is constant in time, which is known as the proportional hazards assumption. However, this assumption is often violated in practice, and when it is violated, the parameter estimated by Cox regression is difficult to interpret. The hazard ratio can be estimated in a nonparametric manner using smoothing, but smoothing-based estimators are sensitive to the selection of tuning parameters, and it is often difficult to perform valid inference with such estimators. In some cases, it is known that the hazard ratio function is monotone. In this article, we demonstrate that monotonicity of the hazard ratio function defines an invariant stochastic order, and we study the properties of this order. Furthermore, we introduce an estimator of the hazard ratio function under a monotonicity constraint. We demonstrate that our estimator converges in distribution to a mean-zero limit, and we use this result to construct asymptotically valid confidence intervals. Finally, we conduct numerical studies to assess the finite-sample behavior of our estimator, and we use our methods to estimate the hazard ratio of progression-free survival in pulmonary adenocarcinoma patients treated with Gefitinib or carboplatin-paclitaxel.


翻译:两个人口或单一人口两个阶层的危险函数比比在时间到活动分析中起着重要作用。 Cox 回归通常用于在假设危险比的假设下估计危险比率,假设该比率在时间上保持不变,即所谓的比例危害假设。然而,这一假设在实际中经常被违反,当它被违反时,Cox 回归估计的参数很难解释。危险比率可以使用平滑的非对称方式来估计,但平滑的估量器对调准参数的选择十分敏感,而且往往难以与此类估计器进行有效的推断。在某些情况下,已知危险比率函数是单调的。在本篇文章中,我们证明危险比率的单一性功能定义了一种变化性相近的顺序,我们研究这个顺序的特性。此外,我们用一个单一的单一性制约来估计危险比率的函数。我们测算器在分布上会达到平均零限度,而且我们用这个结果来评估我们的风险比率-,我们用这个结果来测量我们的行为变化和精确性研究,我们用这个结果来测量我们的行为- 度- 度- 度- 度研究,我们用一个数字- 度- 度- 度- 度- 度- 度- 判断- 判断性- 判断性- 判断性- 方法来构造- 来构造- 来构造- 来构造- 来构建我们用我们用我们用我们用来来构造- 判断性- 判断- 判断性- 来构造- 的判断性- 来构造- 的判断- 方法来构造- 判断- 方法来构造- 来构造- 来构造- 来构造- 来构造- 来构造- 来构造- 来构造- 的计算- 来构造- 来构造- 来构造- 的计算- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 和性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性- 性-

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员