We propose to adopt statistical regression as the projection operator to enable data-driven learning of the operators in the Mori--Zwanzig formalism. We present a principled method to extract the Markov and memory operators for any regression models. We show that the choice of linear regression results in a recently proposed data-driven learning algorithm based on Mori's projection operator, which is a higher-order approximate Koopman learning method. We show that more expressive nonlinear regression models naturally fill in the gap between the highly idealized and computationally efficient Mori's projection operator and the most optimal yet computationally infeasible Zwanzig's projection operator. We performed numerical experiments and extracted the operators for an array of regression-based projections, including linear, polynomial, spline, and neural-network-based regressions, showing a progressive improvement as the complexity of the regression model increased. Our proposition provides a general framework to extract memory-dependent corrections and can be readily applied to an array of data-driven learning methods for stationary dynamical systems in the literature.
翻译:我们提议采用统计回归作为预测操作员,以便能够对毛利-兹旺齐格正式主义的操作员进行数据驱动的学习。我们提出了一个有原则的方法来为任何回归模型提取马尔科夫和记忆操作员。我们表明,根据毛利的预测操作员最近提出的数据驱动的学习算法,选择线性回归是一种较高层次的近似Koopman学习方法。我们表明,更明显的非线性非线性回归模型自然填补了高度理想化和计算高效的毛利的投影操作员与最优化但最不可行的Zwanzig投影操作员之间的差距。我们进行了数字实验,并提取了一系列基于回归的预测的操作员,包括线性、多元性、螺纹线和神经-网络回归,显示出随着回归模型的复杂性增加而逐步改善。我们的提议提供了一个总框架,可以提取依赖记忆的校正,并可以很容易地应用于文献中固定动态系统的一系列数据驱动的学习方法。