In existing image classification systems that use deep neural networks, the knowledge needed for image classification is implicitly stored in model parameters. If users want to update this knowledge, then they need to fine-tune the model parameters. Moreover, users cannot verify the validity of inference results or evaluate the contribution of knowledge to the results. In this paper, we investigate a system that stores knowledge for image classification, such as image feature maps, labels, and original images, not in model parameters but in external high-capacity storage. Our system refers to the storage like a database when classifying input images. To increase knowledge, our system updates the database instead of fine-tuning model parameters, which avoids catastrophic forgetting in incremental learning scenarios. We revisit a kNN (k-Nearest Neighbor) classifier and employ it in our system. By analyzing the neighborhood samples referred by the kNN algorithm, we can interpret how knowledge learned in the past is used for inference results. Our system achieves 79.8% top-1 accuracy on the ImageNet dataset without fine-tuning model parameters after pretraining, and 90.8% accuracy on the Split CIFAR-100 dataset in the task incremental learning setting.
翻译:在使用深神经网络的现有图像分类系统中,图像分类所需的知识隐含在模型参数中。如果用户想要更新这种知识,那么他们就需要微调模型参数。此外,用户无法核实推断结果的有效性或评估知识对结果的贡献。在本文中,我们调查一个储存图像分类知识的系统,例如图像特征图、标签和原始图像,不是在模型参数中,而是在外部高容量存储中。我们的系统在对输入图像进行分类时,是指像数据库那样的存储。为了增加知识,我们的系统更新数据库,而不是微调模型参数,以避免在递增学习的情景中发生灾难性的遗忘。我们重新查看一个 kNN(k-Nearest Neighbor) 分类器,并将其用于我们的系统。通过分析KNN算法提到的周边样本,我们可以解释过去学到的知识是如何用于推断结果的。我们的系统在图像网络数据集上实现了79.8%的顶级-1准确度,而没有在预先训练后进行微调的模型参数,在任务渐进式学习中Splid CIFAR-100数据集的精确度为90.8%。。