Self-supervised learning on graphs has recently drawn a lot of attention due to its independence from labels and its robustness in representation. Current studies on this topic mainly use static information such as graph structures but cannot well capture dynamic information such as timestamps of edges. Realistic graphs are often dynamic, which means the interaction between nodes occurs at a specific time. This paper proposes a self-supervised dynamic graph representation learning framework (DySubC), which defines a temporal subgraph contrastive learning task to simultaneously learn the structural and evolutional features of a dynamic graph. Specifically, a novel temporal subgraph sampling strategy is firstly proposed, which takes each node of the dynamic graph as the central node and uses both neighborhood structures and edge timestamps to sample the corresponding temporal subgraph. The subgraph representation function is then designed according to the influence of neighborhood nodes on the central node after encoding the nodes in each subgraph. Finally, the structural and temporal contrastive loss are defined to maximize the mutual information between node representation and temporal subgraph representation. Experiments on five real-world datasets demonstrate that (1) DySubC performs better than the related baselines including two graph contrastive learning models and four dynamic graph representation learning models in the downstream link prediction task, and (2) the use of temporal information can not only sample more effective subgraphs, but also learn better representation by temporal contrastive loss.


翻译:图表上自我监督的学习最近引起了人们的极大关注,因为其独立于标签,其代表性强。当前关于这一专题的研究主要使用静态信息,例如图形结构,但不能很好地捕捉动态信息,例如边缘的时间标记。现实图形往往是动态的,这意味着节点在特定时间发生相互作用。本文提议了一个自监督的动态图形教学框架(DySubC),它定义了一个时间子图对比学习任务,以同时学习动态图表的结构和演变特征。具体地说,首先提出了一个新的时间子图取样战略,将动态图形的每一个节点作为中心节点,并使用周边结构和边缘时间标记来抽样相应的时间分层。次图代表功能随后根据每个子图节点对节点进行校正后周围点的影响力来设计。最后,结构和时间对比性损失定义了尽量扩大节点代表和时间分层代表之间的相互信息。在五个真实世界数据图上进行实验,将每个节点的每个节点作为中心节点的节点,同时使用边框和边缘时间标记模型来抽取相应的时间比较。 在动态图中,DSub代表功能模型中,不能更好地学习更精确的对比。

1
下载
关闭预览

相关内容

【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Graph: 表现再差,也不进行Pre-Training? Self-Supervised Learning真香!
机器学习与推荐算法
3+阅读 · 2020年6月30日
已删除
AI掘金志
7+阅读 · 2019年7月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
5+阅读 · 2018年4月30日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关VIP内容
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
Graph: 表现再差,也不进行Pre-Training? Self-Supervised Learning真香!
机器学习与推荐算法
3+阅读 · 2020年6月30日
已删除
AI掘金志
7+阅读 · 2019年7月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员