Emotion-cause pair extraction (ECPE) aims to extract emotion clauses and corresponding cause clauses, which have recently received growing attention. Previous methods sequentially encode features with a specified order. They first encode the emotion and cause features for clause extraction and then combine them for pair extraction. This lead to an imbalance in inter-task feature interaction where features extracted later have no direct contact with the former. To address this issue, we propose a novel Pair-Based Joint Encoding (PBJE) network, which generates pairs and clauses features simultaneously in a joint feature encoding manner to model the causal relationship in clauses. PBJE can balance the information flow among emotion clauses, cause clauses and pairs. From a multi-relational perspective, we construct a heterogeneous undirected graph and apply the Relational Graph Convolutional Network (RGCN) to capture the various relationship between clauses and the relationship between pairs and clauses. Experimental results show that PBJE achieves state-of-the-art performance on the Chinese benchmark corpus.
翻译:情感- 情感- 由性( ECPE) 的提取( ECPE) 旨在提取情感条款和相应的原因条款, 最近这些内容受到越来越多的关注。 以往的方法是按特定顺序顺序顺序编码特性。 它们首先将情感和导致特性编码为条款提取, 然后将这些特性合并为对等提取。 这导致任务间特征互动不平衡, 而后来提取的特征与前者没有直接接触。 为了解决这个问题, 我们建议建立一个新型的以对等为基础的联合编码( PBJE) 网络, 以共同特征编码方式同时生成对等和条款特征, 以模拟条款中的因果关系。 PBJE 能够平衡情感条款、 导致条款和对等之间的信息流动。 从多种关系的角度, 我们构建一个多元的无方向图案, 并应用“ 关系图表革命网络( RGCN ) ” 来捕捉条款与对等和条款之间的关系。 实验结果显示 PBJE 能够实现中国基准体系中的最新表现 。