In the standard data analysis framework, data is first collected (once for all), and then data analysis is carried out. Moreover, the data-generating process is typically assumed to be exogenous. This approach is natural when the data analyst has no impact on how the data is generated. The advancement of digital technology, however, has facilitated firms to learn from data and make decisions at the same time. As these decisions generate new data, the data analyst -- a business manager or an algorithm -- also becomes the data generator. This interaction generates a new type of bias -- reinforcement bias -- that exacerbates the endogeneity problem in static data analysis. Causal inference techniques ought to be incorporated into reinforcement learning to address such issues.
翻译:在标准数据分析框架内,首先收集数据(一次收集),然后进行数据分析。此外,数据生成过程通常被认为是外源的。当数据分析员对数据生成方式没有影响时,这一方法自然会发生。但是,数字技术的进步促进了公司从数据中学习,同时作出决定。随着这些决定产生新的数据,数据分析员 -- -- 业务经理或算法 -- -- 也成为数据生成者。这种互动产生了一种新的偏差 -- -- 强化偏差 -- -- 加剧静态数据分析中的内分性问题。在强化学习以解决这些问题时,应当采用因果关系技术。