In these proceedings we present lattice gauge equivariant convolutional neural networks (L-CNNs) which are able to process data from lattice gauge theory simulations while exactly preserving gauge symmetry. We review aspects of the architecture and show how L-CNNs can represent a large class of gauge invariant and equivariant functions on the lattice. We compare the performance of L-CNNs and non-equivariant networks using a non-linear regression problem and demonstrate how gauge invariance is broken for non-equivariant models.
翻译:在这些程序中,我们展示了能够处理来自拉蒂测量理论模拟的数据,同时完全保持测量对称的拉蒂测量仪神经神经网络(L-CNNs),我们审视了结构的各个方面,并展示了L-CNNs如何能代表大类测量器的变异和等异函数。我们用非线性回归问题比较了L-CNNs和非等性网络的性能,并演示了非等性模型的度量误差是如何打破的。