End-to-End task-oriented dialogue systems generate responses based on dialog history and an accompanying knowledge base (KB). Inferring those KB entities that are most relevant for an utterance is crucial for response generation. Existing state of the art scales to large KBs by softly filtering over irrelevant KB information. In this paper, we propose a novel filtering technique that consists of (1) a pairwise similarity based filter that identifies relevant information by respecting the n-ary structure in a KB record. and, (2) an auxiliary loss that helps in separating contextually unrelated KB information. We also propose a new metric -- multiset entity F1 which fixes a correctness issue in the existing entity F1 metric. Experimental results on three publicly available task-oriented dialog datasets show that our proposed approach outperforms existing state-of-the-art models.
翻译:面向终端到终端任务的对话系统根据对话历史和相应的知识库(KB)产生回应。推断那些与发声最相关的KB实体对于生成响应至关重要。通过对不相关的 KB 信息进行软过滤,对大型 KB 的现有艺术量衡状态至关重要。在本文中,我们建议一种新型过滤技术,包括:(1) 一种基于双向相似性的过滤器,该过滤器通过尊重KB 记录中的 n- y 结构来识别相关信息。(2) 一种辅助性损失,有助于分离与背景无关的 KB 信息。我们还提出了一个新的衡量标准 -- -- 多重设置实体F1,它解决了现有实体F1 的正确性问题。三种公开的面向任务的对话数据集的实验结果显示,我们拟议的方法比现有的最新模式更完善。