Spine-related diseases have high morbidity and cause a huge burden of social cost. Spine imaging is an essential tool for noninvasively visualizing and assessing spinal pathology. Segmenting vertebrae in computed tomography (CT) images is the basis of quantitative medical image analysis for clinical diagnosis and surgery planning of spine diseases. Current publicly available annotated datasets on spinal vertebrae are small in size. Due to the lack of a large-scale annotated spine image dataset, the mainstream deep learning-based segmentation methods, which are data-driven, are heavily restricted. In this paper, we introduce a large-scale spine CT dataset, called CTSpine1K, curated from multiple sources for vertebra segmentation, which contains 1,005 CT volumes with over 11,100 labeled vertebrae belonging to different spinal conditions. Based on this dataset, we conduct several spinal vertebrae segmentation experiments to set the first benchmark. We believe that this large-scale dataset will facilitate further research in many spine-related image analysis tasks, including but not limited to vertebrae segmentation, labeling, 3D spine reconstruction from biplanar radiographs, image super-resolution, and enhancement.
翻译:与脊椎有关的疾病发病率高,造成巨大的社会成本负担。 脊椎成像是非侵入性视觉化和评估脊柱病理的基本工具。 将脊椎分割在计算断层图像中是临床诊断和手术规划脊椎疾病定量医学图像分析的基础。 目前公开提供的脊椎结骨上附加注释的数据集规模较小。 由于缺乏大规模附加注释的脊椎图像数据集, 主流的深层学习分化方法( 由数据驱动的) 受到严重限制。 在本文件中, 我们引入了大规模脊椎CT数据集, 称为 CTSpine1K, 由多种来源整理, 用于脊椎分解, 包含1 005 CT 卷, 标记为脊椎骨的脊椎分为11 100多个以上。 基于此数据集, 我们进行了几项脊椎脊椎分化实验, 以设定第一个基准。 我们相信, 大型数据集将便利对许多脊椎相关图像集进行进一步的研究, 包括脊椎分解、 3 且不限于 脊脊椎强化的磁段 。