Side-informed steganography has always been among the most secure approaches in the field. However, a majority of existing methods for JPEG images use the side information, here the rounding error, in a heuristic way. For the first time, we show that the usefulness of the rounding error comes from its covariance with the embedding changes. Unfortunately, this covariance between continuous and discrete variables is not analytically available. An estimate of the covariance is proposed, which allows to model steganography as a change in the variance of DCT coefficients. Since steganalysis today is best performed in the spatial domain, we derive a likelihood ratio test to preserve a model of a decompressed JPEG image. The proposed method then bounds the power of this test by minimizing the Kullback-Leibler divergence between the cover and stego distributions. We experimentally demonstrate in two popular datasets that it achieves state-of-the-art performance against deep learning detectors. Moreover, by considering a different pixel variance estimator for images compressed with Quality Factor 100, even greater improvements are obtained.
翻译:知情的侧向色学一直是外地最安全的方法之一。 然而, JPEG 图像的大多数现有方法都使用侧边信息, 此处是圆差。 我们第一次显示四舍五入错误的有用性来自其与嵌入变化的共差。 不幸的是, 连续变量和离散变量之间的这种共差在分析上是无法找到的。 提出了共差的估算, 允许以 DCT 系数差异的变异来模拟色谱学。 由于今天的Steg分析最好在空间域进行, 我们得出一个概率比测试, 以保存一个降压 JPEG 图像模型的模型。 拟议的方法随后通过最小化 Kullback- Lever 介面分布和 stego 分布之间的差异来约束这项测试的力量。 我们实验地在两个流行的数据集中显示, 与深层学习检测器相比, 它能够达到最先进的性能。 此外, 通过考虑一个不同的像素差异, 将图像与 QQ 级数 100 的估量值进行更大的改进。