Fake news and misinformation are a matter of concern for people around the globe. Users of the internet and social media sites encounter content with false information much frequently. Fake news detection is one of the most analyzed and prominent areas of research. These detection techniques apply popular machine learning and deep learning algorithms. Previous work in this domain covers fake news detection vastly among text circulating online. Platforms that have extensively been observed and analyzed include news websites and Twitter. Facebook, Reddit, WhatsApp, YouTube, and other social applications are gradually gaining attention in this emerging field. Researchers are analyzing online data based on multiple modalities composed of text, image, video, speech, and other contributing factors. The combination of various modalities has resulted in efficient fake news detection. At present, there is an abundance of surveys consolidating textual fake news detection algorithms. This review primarily deals with multi-modal fake news detection techniques that include images, videos, and their combinations with text. We provide a comprehensive literature survey of eighty articles presenting state-of-the-art detection techniques, thereby identifying research gaps and building a pathway for researchers to further advance this domain.
翻译:虚假新闻和错误信息是全球人民关注的一个问题。互联网和社交媒体网站的用户经常遇到虚假信息的内容。虚假新闻探测是分析最广泛和最突出的研究领域之一。这些检测技术采用流行的机器学习和深层学习算法。该领域以前的工作在网上传播的文本中广泛涉及假新闻探测。广泛观察和分析的平台包括新闻网站和Twitter。脸书、Reddit、WhatsApp、YouTube和其他社会应用程序正在这个新兴领域逐渐受到关注。研究人员正在根据由文本、图像、视频、演讲和其他促成因素组成的多种模式分析在线数据。各种模式的结合导致了高效的假新闻探测。目前,有大量调查综合了文本假新闻检测算法。这一审查主要涉及多式假新闻探测技术,其中包括图像、视频及其与文本的结合。我们提供了对八种介绍最新检测技术的文章的全面文献调查,从而找出研究差距,并为研究人员进一步推进这个领域开辟了一条途径。