Blind modulation identification is essential for 6G's RAN-agnostic communications, which identifies the modulation type of an incompatible wireless signal without any prior knowledge. Nowadays, research on blind modulation identification relies on deep convolutional networks that deal with a received signal's raw I/Q samples, but they mostly are limited to single-carrier signal recognition thus not pragmatic for identifying spectro-temporal OFDM/OFDMA signals whose modulation varies with time and frequency. Therefore, this paper proposes RiSi, a semantic segmentation neural network designed to work on OFDMA's spectrograms, by replacing vanilla DeepLabV3+'s 2D convolutions with 'flattened' convolutions to enforce the time-frequency orthogonality constraint and to achieve the grid-like pattern of OFDMA's resource blocks, and by introducing three-channel inputs consisting of I/Q/amplitude. Then, we synthesized a realistic and effective dataset consisting of OFDMA signals with various channel impairments to train the proposed network. Moreover, we treated varying communication parameters as different domains to apply domain generalization methods, to enhance our model's adaptability to diverse communication environments. Extensive evaluation shows that RiSi's modulation identification accuracy reaches 86% averaged over four modulation types (BPSK, QPSK, 16-QAM, 64-QAM), while its domain generalization performance for unseen data has been also shown to be reliable.


翻译:盲人调制信号识别对于 6G 的 RAN- Ann- Annonotic 通信来说至关重要, 6G 的 RAN- Annostic 通信可以识别不相容的无线信号的调制类型。 如今, 盲人调制识别研究依赖于深演动网络, 这些网络涉及接收信号的原始 I/ Q 样本, 但这些网络主要局限于单一载体信号的识别, 因而对于识别调控时间和频率不同的DM/ OFDMA 信号的光谱- 时间- 时间- 时间- 时间- 频率不一来说并不实用。 因此, 本文提出了 Risi, 一个由DMA 信号和不同频道的光谱化神经网络设计起来的语义化网络, 取代 Vanilla DeepLabV3+ 的 2D convoluctions, 以“ 膨胀化” 来实施时间- 频率/ 或调控调调限制, 实现DMA 资源块的网络的电网状模式- 。 此外, 我们用不同域域域域的通信参数显示, 通用的频域的调控域是通用的惯域, 度的调化,, 向通用的频域显示通用的频域域域, 度环境, 向通用的调制, 等域的通信环境。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月20日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员