In 1989, Ne\v{s}et\v{r}il and Pudl\'ak posed the following challenging question: Do planar posets have bounded Boolean dimension? We show that every poset with a planar cover graph and a unique minimal element has Boolean dimension at most 13. As a consequence, we are able to show that there is a reachability labeling scheme with labels consisting of $O(\log n)$ bits for planar digraphs with a single source. The best known scheme for general planar digraphs uses labels with $O(\log^2 n)$ bits [Thorup JACM 2004], and it remains open to determine whether a scheme using labels with $O(\log n)$ bits exists. The Boolean dimension result is proved in tandem with a second result showing that the dimension of a poset with a planar cover graph and a unique minimal element is bounded by a linear function of its standard example number. However, one of the major challenges in dimension theory is to determine whether dimension is bounded in terms of standard example number for all posets with planar cover graphs.
翻译:1989年, Ne\v{s} et\ v{r}il 和 Pudl\'ak 提出了以下具有挑战性的问题: 平面图状图状的尺寸都与布尔维度相联吗? 我们显示, 每一个带有平面覆盖图和独特最小元素的图状都与布尔维度相联。 因此, 我们能够显示, 存在一个可达性标签方案, 标签由 $O( log n) 和 $( log n) 组成, 用于单源的平面图状图状图状。 最著名的一般平面图谱图状图案的图状使用$O( log% 2 n) 元比特的标签[Thoroup JACM 2004] 。 并且它仍然可以确定, 使用 $O (\ log n) 元比特的标签是否存在。 布尔维度结果与第二个结果同时证明, 一个带有平面覆盖图状图状图状图和独特最小元素的尺寸受其标准示例数的线性函数约束。 但是, 维理论中的一个主要挑战是如何确定, 以所有图状图状图状图状图状图状图状图状的尺寸的尺寸为约束。