Noisy labels, resulting from mistakes in manual labeling or webly data collecting for supervised learning, can cause neural networks to overfit the misleading information and degrade the generalization performance. Self-supervised learning works in the absence of labels and thus eliminates the negative impact of noisy labels. Motivated by co-training with both supervised learning view and self-supervised learning view, we propose a simple yet effective method called Co-learning for learning with noisy labels. Co-learning performs supervised learning and self-supervised learning in a cooperative way. The constraints of intrinsic similarity with the self-supervised module and the structural similarity with the noisily-supervised module are imposed on a shared common feature encoder to regularize the network to maximize the agreement between the two constraints. Co-learning is compared with peer methods on corrupted data from benchmark datasets fairly, and extensive results are provided which demonstrate that Co-learning is superior to many state-of-the-art approaches.


翻译:由人工标签或为监督学习收集的网上数据错误造成的噪音标签可导致神经网络过度适应误导信息并降低一般化性能; 在没有标签的情况下进行自我监督学习,从而消除噪音标签的负面影响; 通过以监督学习观点和自我监督学习观点共同培训,我们提出一个简单而有效的方法,称为 " 使用噪音标签共同学习 " ; 共同学习以合作方式进行监督学习和自我监督学习。 与自我监督模块内在相似性以及与新监督模块结构相似性的限制被强加在共同的通用功能编码器上,使网络正规化,以最大限度地实现两个限制之间的协议; 共同学习与基准数据集腐败数据的同行方法进行比较,并提供了广泛的结果,表明共同学习优于许多最先进的方法。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员