The general adwords problem has remained largely unresolved. We define a subcase called {\em $k$-TYPICAL}, $k \in \Zplus$, as follows: the total budget of all the bidders is sufficient to buy $k$ bids for each bidder. This seems a reasonable assumption for a "typical" instance, at least for moderate values of $k$. We give a randomized online algorithm achieving a competitive ratio of $\left(1 - {1 \over e} - {1 \over k} \right) $ for this problem. We also give randomized online algorithms for other special cases of adwords. Another subcase, when bids are small compared to budgets, has been of considerable practical significance in ad auctions \cite{MSVV}. For this case, we give an optimal randomized online algorithm achieving a competitive ratio of $\left(1 - {1 \over e} \right)$. Previous algorithms for this case were based on LP-duality; the impact of our new approach remains to be seen. The key to these results is a simplification of the proof for RANKING, the optimal algorithm for online bipartite matching, given in \cite{KVV}. Our algorithms for adwords can be seen as natural extensions of RANKING.


翻译:一般广告问题基本上仍未解决。 我们定义了一个名为 $ $k$- TyPical}, $k $ $ $ +$ 的子方案, 具体如下: 所有投标人的总预算足以为每个投标人购买美元标价。 这似乎是“ 典型” 实例的合理假设, 至少对中值 $k$。 我们给出了一个随机化的在线算法, 其竞争性比率为$left(1 - {1\ over e} - {1\ over k} - {1\ right} $ 。 我们还为其他特殊广告案提供了随机化的在线算法 。 另一个子方案, 当投标与预算相比小时, 已经具有相当大的实际意义。 对于这个案例, 我们给出了一个最佳的在线算法, 实现 $left(1 - { 1\ \ over e}\ right $ 。 这个案子的前算法是以LP- 质量为依据的; 我们的新方法的影响仍然有待观察 。 另一个子, 当与预算相比, 我们的在线算法的精细化, 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
0+阅读 · 2021年11月4日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员