The paper considers direction of arrival (DOA) estimation from long-term observations in a noisy environment. In such an environment the noise source might evolve, causing the stationary models to fail. Therefore a heteroscedastic Gaussian noise model is introduced where the variance can vary across observations and sensors. The source amplitudes are assumed independent zero-mean complex Gaussian distributed with unknown variances (i.e. the source powers), inspiring stochastic maximum likelihood DOA estimation. The DOAs of plane waves are estimated from multi-snapshot sensor array data using sparse Bayesian learning (SBL) where the noise is estimated across both sensors and snapshots. This SBL approach is more flexible and performs better than high-resolution methods since they cannot estimate the heteroscedastic noise process. An alternative to SBL is simple data normalization, whereby only the phase across the array is utilized. Simulations demonstrate that taking the heteroscedastic noise into account improves DOA estimation.
翻译:本文从噪音源可能会演变,导致固定模型失灵。 因此, 在观测和感应器不同的情况下, 引入了异差异差高斯异族噪声模型。 源振幅被假定为独立的零度复合高斯异差, 分布差异不明( 源动力), 激发对振动最大可能性的多光谱传感器阵列数据 。 平流波的剂量根据多光谱传感器阵列数据估算, 其间, 噪音在感应器和快照中都得到估计 。 SBL 方法更灵活, 运行优于高分辨率方法, 因为它们无法估计超光谱噪音过程 。 SBL 的替代品是简单的数据正常化, 即只使用整个阵列的阶段 。 模拟显示, 将超光谱噪音纳入考虑会改善 DOA 估计 。