We address in this paper a new approach for fitting spatiotemporal models with application in disease mapping using the interaction types 1,2,3, and 4. When we account for the spatiotemporal interactions in disease-mapping models, inference becomes more useful in revealing unknown patterns in the data. However, when the number of locations and/or the number of time points is large, the inference gets computationally challenging due to the high number of required constraints necessary for inference, and this holds for various inference architectures including Markov chain Monte Carlo (MCMC) and Integrated Nested Laplace Approximations (INLA). We re-formulate INLA approach based on dense matrices to fit the intrinsic spatiotemporal models with the four interaction types and account for the sum-to-zero constraints, and discuss how the new approach can be implemented in a high-performance computing framework. The computing time using the new approach does not depend on the number of constraints and can reach a 40-fold faster speed compared to INLA in realistic scenarios. This approach is verified by a simulation study and a real data application, and it is implemented in the R package INLAPLUS and the Python header function: inla1234().
翻译:在本文中,我们探讨了利用互动类型1、2、3和4在疾病测绘模型中说明时空相互作用时空模型应用应用疾病绘图的新办法。当我们考虑到疾病绘图模型中的时空相互作用时空模型时,推断就更有助于揭示数据中的未知模式。然而,当位置和(或)时间点的数量很大时,由于对推断来说必要的必要限制数量之多,推论就具有计算上的挑战性。使用新方法的计算时间并不取决于制约数量,在现实情景中,与INLA相比,可以达到40倍的速率。我们根据密集的矩阵重新制定INLA方法,以适应内在的时空模型与四种互动类型,并顾及总到零限制,并讨论如何在高性能计算框架中实施新方法。使用新方法的计算时间并不取决于制约数量,在现实情景中,与INLA相比,这一方法可以达到40倍的速率。这个方法经过模拟研究和真实数据应用,并在RA34中执行该软件包件。