Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in the deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. In this paper, we provide an extensive survey of deep learning-based breast cancer imaging research, covering studies on mammogram, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods, publicly available datasets, and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are described in detail. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.
翻译:乳腺癌已经成为2020年以来全球所有恶性肿瘤中发病率最高的一种。乳腺成像在乳腺癌患者的早期诊断和干预方面发挥了重要作用。在过去的十年里,深度学习在乳腺癌成像分析方面取得了显着进展,在解释乳腺成像模态的丰富信息和复杂上下文方面具有巨大潜力。考虑到深度学习技术的快速改进和乳腺癌的严重性不断增加,总结过去的进展并识别未来需要解决的挑战至关重要。在本文中,我们提供了对于过去十年进行的基于深度学习的乳腺癌成像研究广泛调查,涵盖了针对乳腺摄影、超声、磁共振成像和数字病理学成像的研究。详细描述了主要的深度学习方法、公开可获得的数据集以及成像筛选、诊断、治疗反应预测和预后的应用。根据这一调查的发现,我们全面讨论了基于深度学习的乳腺癌成像研究面临的挑战和未来可能的研究方向。